
Artipixoids!
The Concept

by Andrey Zamaraev
a5kin@github.com

May 8, 2017

2D body, 2D brain,
2D pleasure, 2D pain.

— Flatlander’s credo

Artipixoids! is half generative art, half artificial life project with a focus on
genetic cellular automata obeying energy conservation principle. Started in the
end of 2014, the main engine has undergone several major modifications, and is
still in development. Now is the right time to share basic concepts underlying all
previous modifications, and begin to work on public framework, allowing others
to build their own wonderful worlds.

The document is split up in two parts. In The Manifesto we will outline the main
areas of the project development, and the main goals per each area. Some of
them may seem unfeasible, but actually it’s just a matter of time and resources
to be involved. In The Core section, we will give the formal definition to all
features we would like to see in the core of our future framework. Please forgive
the complicated language of this section, it is just an attempt to unambiguously
describe the ideas.

1

Contents

1 The Manifesto 3

1.1 Artistic . 3

1.2 Scientific . 3

1.3 Divine . 6

1.4 Social . 6

1.5 Alien . 7

2 The Core 8

2.1 Grid and neighborhood topologies 8

2.2 Border Effects . 9

2.3 Single Cell Design . 10

2.4 Time and Updates . 11

2.5 Emit Phase . 12

2.6 Absorb Phase . 13

2.7 Energy conservation . 14

2.8 Genetic Microprograms . 15

2.9 Parameter Classes . 18

2.10 Optimization Patterns . 19

2

1 The Manifesto

1.1 Artistic

1. We are going to generate the beautiful objects of abstract digital arts, even
at the cost of computational resources.

2. The objects of arts are: static images, videos, sounds, 3D models, etc.

3. We will consider the object as Artipixoid if and only if:

(a) the object is generated by CA fulfilling all the definitions from section 2
(The Core);

(b) the object’s generative algorithm is not using anything but CA states
as input;

(c) the object’s generative algorithm is not based on the objects of arts,
other than Artipixoids (eg. deep art based on Van Gogh paintings or
photos doesn’t count, but deep art based on other Artipixoids is OK).

4. Artipixoids that has no artistic value are bad and a subject to genocide.

5. Yet, if at least one person found them beautiful, we let them live.

1.2 Scientific

1. We are going to make experiments to test the hypothesis that a life can self-
organize in an artificial (digital) environment from a random initial state.

2. The properties of life , as we see it, are following.

(a) Integrity: every lifeform should be distinct from its local environment,
and should preserve its individuality during the lifespan.

(b) Sustainability: a lifeform should be able to self-repair in case of damage,
and to maintain the physical manifestation (body) for a long enough
period of time.

(c) Reproductivity: a lifeform should be able to replicate, creating new
individuals with small enough differences to consider them inexact copy.

(d) Novelty: new lifeforms should arise out of the old ones, and they should
act more effectively than the old ones.

3

(e) Diversity: there should be enough different lifeforms to put them in
groups called “species”.

(f) Complementarity: different species should learn to live in symbiosis and
help each other to survive and improve, forming stable ecosystems.

(g) Adaptability: species should learn to evolve in a way they are constantly
adapting to aggressive environmental changes.

3. The properties of artificial environment , as we see it, are following.

(a) Discreteness: the space and time of our environment should be discrete.
So, space should consist of indivisible quanta, and their updates should
occur in separate timesteps synchronously. In addition, any parameter
of spatial quanta should take integer values only. This requirements will
allow us to run the simulation of our environment on modern digital
computational systems.

(b) Determinacy: a global state of the environment at the timestep t should
lead to the one and only one global state at the timestep t + 1. This
will give us insurance of the exactly same outcome, every time we run
a particular experiment with the same initial state.

(c) Locality: each quantum should have the same number and the same
topology of its neighbors, and quantum’s state should be updated using
nothing more than the states of its neighbors and its own state. This
will allow us to exploit the massively parallel computations, thus greatly
speeding up the simulation.

(d) Isolation: the environment as a whole should behave like an isolated
thermodynamic system. So, each quantum should have an energy level,
and sum of all quanta energy levels should be a constant value. The
energy conservation will make us sure, that none of our experiments
will lead neither to the extinction nor to the explosion of the “matter”.

(e) Isotropy: all possible reflections of quantum’s neighborhood at the
timestep t should lead to the same new quantum’s state at timestep
t + 1. This will allow energy to spread in all possible directions uni-
formly.

(f) Polymorphism: each quantum should have a microprogram, influencing
its local update rules to some degree. A microprogram in return could
also be changed according to update rules. This will allow us to add
genetic informational component to the quantum level. We believe, this
component is the key for the emergence of self-organized matter effects
at the higher (macro) levels.

4

(g) Stochasticity: optionally, some pseudorandom component would influ-
ence local updates too. For that, each quantum should have its own
PRNG with the long enough period. This will allow energy to spread
in chaotic clouds, rather than in direct lines.

(h) Mutability: optionally, a quantum’s microprogram would randomly mu-
tate over time. This will result in a wider genetic search for the better
microprograms, and also may prevent the whole environment from be-
ing conquested by a single genome.

(i) Magnetism: optionally, quanta would have the tendency to “attract”
each other with some sort of force (gravitational, electromagnetic, or
any other). We believe, magnetism is another key aspect behind the
phenomenon of life as we know it.

4. Random initial state , could be obtained using following known patterns.

(a) “Primordial Soup”: each and every quantum initially has an equally
small amount of energy, other parameters are random. This is a good
test for the ability of energy to self-organize in clusters from the com-
pletely uniform distribution. The bigger clusters are, the better. Fractal
clusters are even better.

(b) “Big Bang”: a small area of space is initialized with a high amount of
energy and random parameters per each quantum. Outside the area,
quanta has either zero or minimum possible amount of energy. This is
a good test for the ability of energy to spread in empty space. We could
also detect the fastest types of energy using this pattern.

(c) “Super Cluster”: same as Big Bang, but several areas with a bit lower
energies are randomly initialized. The positions of areas are random
across the space. This is a good test for gravitational effects, and also
for collisions of different energy beams, produced in micro-bangs.

5. To obtain the better results, we reserve the rights to intervene the natural
process of evolution. This will ruin the idea of self-emergence, but still may
prove the possibility of artificial life in our environment.

The presumable methods of intervention are following.

(a) Genetic selection: during the simulation, we are collecting the most in-
teresting and promising areas of space, then combine them all in a single
initial state and repeat the process recursively while novel phenomena
of interest are showing up.

5

(b) Directed mutation (a.k.a. “Hand of Fate”): during the simulation, we
are occasionally pointing our finger to a small area of interest, and all
quanta in this area are randomly changing parameters, excluding energy
level. Then, evolution continues.

(c) Pre-designed components: we are designing patterns of matter manually
quantum by quantum, then using them either as parts of more complex
designs or to impact on a “raw” matter in some way.

1.3 Divine

1. We, as young goddesses and gods, are willing to create worlds with one click
of our fingers. Actually, it doesn’t have to be a click, a tap of one finger is
even better.

2. After the tap, we are willing to say the Word, which contains the essence of
the future world.

3. Then, the world begins to bloom, and it blooms the same every time we say
the same Word.

4. Some of us will just meditate on the beauty of their worlds, wandering around
and changing the views.

5. Others will actively play demiurges using scientific wizardry from previous
section, or even more powerful stuff.

6. And some will get bored and destroy the creation with a single tap of one’s
finger. Thus, letting its inhabitants live in some parallel universe, free of
divine will and happy.

1.4 Social

1. We are going to build the community over those who interested in any of
previously mentioned ideas.

2. For that, we need a framework, implementing basic CA engine described
below, along with a set of modular tools to easily build engine modifications.

3. Then, we will be able to exchange new modifications in a form of compact
modules.

6

4. We will also be able to exchange new modular tools and extend our frame-
work with them for future re-using.

5. Finally, for each modification, we will be able to make a collection of the
experiment files with the initial state and hyper-parameters included, and
run them in the uniform interactive environment on a massively parallel
hardware like GPU clusters.

1.5 Alien

1. We are going to monitor any signs of life in the artificial environment de-
scribed in Section 1.2.

2. We will study potential candidates for the role of “living” artificial creatures.

3. We are swearing to refrain from any act resulting in irreversible harm to any
artificial creature we will find sentient.

4. We will try to make a contact with those artificial creatures we will find
intelligent.

5. We are responsible for any loss of data containing sentient or intelligent
creatures.

7

2 The Core

There is a special subclass of cellular automata that allows us to implement all
the properties of environment described in section 1.2. We call it Buffered State
Cellular Automata (BSCA). In this section, we will give the formal definition of
all BSCA features, to be integrated in the core of our future framework.

2.1 Grid and neighborhood topologies

As in any CA, grid in BSCA is D-dimensional lattice of cells, each having N
neighbors. (D,N) ∈ [1..∞).

The cells are stored in a sequence of length M :

C = 〈c0, ..., cM−1〉, M ∈ [1..∞), (1)

where elements are nested sequences with uniform structure called cell state. See
the exact definition of the cell state in Eq. (17) below. We may refer to C as to a
board state later.

The Cartesian coordinates of the cell with index i could be obtained as

[x0, ..., xD−1] = χ(i), i ∈ [0..M), (2)

where χ : Z→ RD is lattice topology function.

Let also define a sequence of all cells’ coordinates as

X = 〈χ(0), ..., χ(M − 1)〉. (3)

We may refer to X as to just a board later.

The Cartesian coordinates of cell’s j-th neighbor could be obtained as

[x0, ..., xD−1] = ν(Xi, j), i ∈ [0..M), j ∈ [1..N], (4)

where ν : RD,Z→ RD is neighborhood topology function.

Thus, we will assume the whole grid topology is homogeneous if and only if the
following equation holds for each value of j separately:

Xi − ν(Xi, j) = dj, ∀ i ∈ [0..M), j ∈ [1..N], (5)

where dj is a constant vector for each j. So, the vector difference between the
positions of cell and its j-th neighbor should be a constant for each cell in a grid.

8

2.2 Border Effects

A border cell is a cell, having at least one of its neighbors off the board X. If Ai
is a set of all i-th cell’s neighbors, that are inside X:

Ai = {Ci | ν(Xi, j) ∈ X, j ∈ [1..N]}, i ∈ [0..M), (6)

then the following inequality holds for all border cells:

|Ai| 6= N, i ∈ [0..M). (7)

In order to correctly process all cells, including border ones, we have to define a
conditional function η : Z,Z→ Sc for neighbors obtainment. Let call it a neighbor
function:

η(i, j) =

{
Cχ−1(ν(Xi,j)) if ν(Xi, j) ∈ X,
β(ν(Xi, j)) if ν(Xi, j) /∈ X,

(8)

where β : RD → Sc is a border function returning a state for a hypothetical
cells outside X, Sc is a set of all possible cell states, as stated in Eq. (18), and
χ−1 : RD → Z is a reverse lattice topology function, satisfying the following
equation:

χ−1(χ(i)) = i. (9)

Border function β could take a variety of forms. It could just be a constant pre-
defined state (static borders). Or wrap borders into higher dimensional manifold
topology, like torus, Möebius strip or Klein bottle. It could even yield a random
state each time.

In case of wrapping, the border function will take a form of

β(x) = Cβ∗(x), β∗(x) ∈ [0..M), (10)

where β∗ : RD → Z is a wrap function, mapping off-board coordinates to other cells
on the board, and on-board coordinates strictly to the cells with those coordinates:

β∗(x) =

{
χ−1(x) if x ∈ X,
i ∈ [0..M) if x /∈ X.

(11)

We will assume that the whole grid neighborhood is homogeneous if and only if
the border function takes a form as in Eq. (10), and the following condition holds:

Ci ∈ {η(i′, j) | j ∈ [1..N]}, ∀ i′ ∈ {β∗(ν(Xi, j)) | j ∈ [1..N]}, i ∈ [0..M), (12)

9

so, each cell should be present in a set of neighbors for all of its neighbors.

Be warned, any border function that breaks the neighborhood homogeneity, may
also break an energy conservation, unless the buffered interactions with off-board
cells are explicitly restricted in update rules. See Section 2.7 for more details.

2.3 Single Cell Design

Let recursively define a parameter as either an integer or a sequence of parameters.
Then, the infinite set P of all possible parameters is

P0 = Z,

Pn+1 =
∞⋃
i=1

P i
n,

(13)

thus we can say that p is a parameter if and only if p ∈ P .

Let also define a recursive function ϕ : P → P , that will replace all integers with
zeros in a parameter:

ϕ(p) =

{
0 if p ∈ Z,
〈ϕ(p0), ..., ϕ(p|p|−1)〉 if p /∈ Z.

(14)

We will call ϕ parameter topology function, and will assume two parameters p1 and
p2 have the same topology if and only if the following equation holds:

ϕ(p1) = ϕ(p2). (15)

The generic state then is a parameter with the constant topology within a partic-
ular BSCA. Let define Ss as a set of all possible generic states:

Ss = {s | s ∈ P, ϕ(s) = pc}, (16)

where pc ∈ P is a constant topology value.

The cell state c, as stated in Eq. (1) is a sequence of N + 1 generic states:

c = 〈s0, ..., sN〉, si ∈ Ss ∀ i ∈ [0..N], (17)

where s0 is the main state, and s1, ..., sN are the buffered states, one per each
neighbor. At the Fig. 1, you can see a cell design for 2-dimensional BSCA with

10

S0

S1

S2

S3

S4

Figure 1: Single cell design in BSCA.

Von Neumann neighborhood. Buffered neighbor states is the crucial aspect of
BSCA, it is the basic feature allowing us to implement lossless models with energy
exchanges and genome crossbreeding across all neighbor cells. See more on this
topic in the sections below.

Let also define two more sets for future use:

Sc = SN+1
s , (18)

Sb = SMc , (19)

where Sc is a set of all possible cell states, and Sb is a set of all possible board
states.

2.4 Time and Updates

The universe is a board state evolving in discrete timesteps. Let define the universe
U as a potentially infinite recurrent sequence:

U0 = Cs,

Ut+1 = ω(Ut),
(20)

where Cs ∈ Sb is an initial board state (also called seed), t is a timestep number
and ω : Sb → Sb is an update function.

In BSCA, the evolution at a single timestep is going in two phases: emit phase
and absorb phase, so update function will take a form of

ω(u) = α(ε(u)), (21)

where α is absorb function and ε is emit function. Let describe how both of them
works in the next sections.

11

2.5 Emit Phase

Figure 2: Emit Phase in BSCA.

The process of emit is like sending the messages from a cell to its neighbors. Each
cell performs it as follows.

1. The cell is taking a sequence of all its neighbors’ main states, as well as its
own main state:

ηe(C, i) = 〈γ(Ci, 0), γ(η(i, 1), 0), ..., γ(η(i, N), 0)〉, (22)

where i is the cell’s index and γ is a function for obtaining an item from the
sequence:

γ(s, i) = si. (23)

2. The cell is modifying its buffers and main state as a result of decision function
σ : Sc → Sc:

Ci := σ(ηe(C, i)), (24)

where i is the cell’s index and C is a board state at the current timestep t:
C = Ut. The decision function σ could be as complex as you need: from
naive copy of main state to sophisticated microprogram execution.

3. At the end of emit phase, each buffer should contain a generic state intended
for a specific neighbor.

12

The whole emit function ε : Sb → Sb thus takes a form of

ε(C) = 〈σ(ηe(C, 0)), ..., σ(ηe(C,M − 1))〉, (25)

Fig. 2 shows the emit phase for 2-dimensional BSCA with Von Neumann neighbor-
hood. The arrows are indicating the updates. So, at this phase, the main states
are read-only, and the buffers are write-only within every given cell, which makes
the process “thread safe”.

2.6 Absorb Phase

Figure 3: Absorb Phase in BSCA.

At the absorb phase, each cell is receiving buffered states as “messages” from its
neighbors, then evolving. It goes as follows.

1. From each neighbor, the cell is taking a buffered state intended for itself,
and making a sequence from these states, along with its own main state:

ηa(C, i) = 〈γ(Ci, 0), γ(η(i, 1), ι−1(i)), ..., γ(η(i, N), ι−1(i))〉, (26)

13

where i is the cell’s index, γ is a function from Eq. (23), and ι−1 : Z → Z
is the function for reverse neighbor index obtaining, for which the following
equation holds:

η(i, j) = η(χ−1(ν(Xi, j)), ι
−1(j)). (27)

2. The cell is modifying its own main state as a result of blend function ψ :
Sc → Sc:

Ci := ψ(ηa(C, i)), (28)

where i is the cell’s index and C is a board state at the current timestep
t: C = Ut. The blend function ψ is generally performing a combination of
incoming buffer states. It could be a sum or mean value or some genome
crossover etc. Although, no one can keep you from inventing more exotic
blend functions.

3. At the end of absorb phase, each cell’s main state is evolved and a subject
to the observation, you can record it, use in visualization and so on.

The whole absorb function α : Sb → Sb thus takes a form of

α(C) = 〈ψ(ηa(C, 0)), ..., ψ(ηa(C,M − 1))〉, (29)

Fig. 3 shows the absorb phase for 2-dimensional BSCA with Von Neumann neigh-
borhood. The arrows are indicating the updates. So, at this phase, the buffered
states are read-only, and the main states are write-only within every given cell,
which in combination with emit phase, gives us the ability to safely run the whole
process on massively parallel architectures.

2.7 Energy conservation

Using the design from previous sections, it is very easy to define a model that will
behave like an isolated thermodynamic system (see Item 3d from Section 1.2). If
E : Ss → Z is a function for extracting the energy component from the generic
state, then we can say the system will obey the energy conservation principle if
the following equations holds:

N∑
i=0

E(ci) =
N∑
i=0

E(γ(σ(c), i)), ∀ c ∈ Sc, (30)

14

N∑
i=0

E(ci) =
N∑
i=0

E(γ(ψ(c), i)), ∀ c ∈ Sc. (31)

Thus, the summed energy should stay the same for the argument and the result
of either decision or blend function.

The broken neighborhood homogeneity from Eq. (12) could easily be a threat for
energy conservation. For example, in a case of static borders the energy may leak
over the edge of the board. To prevent this, we must restrict buffered interactions
with the off-board cells: at the emit phase, all the buffers pointing over the edge
should be set to a state of zero energy, and Eq. (30) should still be held.

Please also note, energy conservation is the mandatory criteria for “genuine” Ar-
tipixoids (see Item 3a from Section 1.1).

2.8 Genetic Microprograms

As we stated in The Manifesto, informational component is the key aspect to the
phenomenon of life as we know it. Without information, the energy could just be
a dull cloud of dust wandering randomly in space and time. But, as we all can see,
the matter keeps organizing in complex self-replicating patterns, and this happens
at each level of existence: from galaxies to atoms. We believe, this principle of
self-organization scales fractally from the very bottom level of indivisible Planck
scale quanta, each behaving like a machine executing a genetic microprogram.

Since the cell is the smallest unit in our artificial environment, it’s a good candidate
for microprogram execution. For that, it must have several pre-defined parameters:

• an integer parameter pp to hold an execution pointer;

• an integer parameter pm to hold a set of microinstructions (program mem-
ory), Lm bits in total, Lc bits per instruction, Lm, Lc ∈ [1..∞);

• a sequence of integer parameters to hold some values (registers): pr =
〈pr0 , pr1 , ...〉

Then, at the emit phase the cell acts as follows:

1. Incrementing execution pointer, and returning it to the beginning as needed:

pp := (pp + 1) mod (Lm/Lc). (32)

15

2. Obtaining a microinstruction at the position of execution pointer:

pi := (pm lsh (pp ∗ Lc)) and (2Lc − 1). (33)

3. Modifying its own state as shown in Eq. (24), but the decision function is
gotten from the pre-defined sequence of functions, one function per each
microinstruction:

σ ⇔ σpi . (34)

Thus, the decision function is depending on the current microinstruction.

We may consider a microprogram’s memory as a genome. Then, at the absorb
phase, the cell can change its microprogram with some genetic crossover algo-
rithm using all “incoming” genomes from neighbor’s buffers. The exact crossover
algorithm should be implemented as a part of blend function ψ, see Eq. (28)

The microinstructions could take many forms. Here, we’ll give some insights to
the ideas we are actively using in our microprograms.

Value Saturation. The energy values of neighbors could be saturated to a single
bit. A possible saturation function θ : Ss, Ss → {0, 1} may take a form of:

θ(sm, sn) =

{
0 if E(sm) < E(sn),

1 if E(sm) ≥ E(sn),
(35)

where sm is a cell’s main state, sn is a neighbor cell’s state, and E is a function
from Eq. (30). Then, we can use those bit values in the functions described
below in this list. You can use other variations of saturation functions as
well, like a fixed threshold, hysteresis, etc.

Gated View. Sometimes, you need to reduce a number of neighbors to operate
on. For that, let introduce a special parameter pg ∈ [1..N] called gate. The
gate is an integer pointing to a neighbor’s index. Thus, you can use this value
i.e. for spreading an energy to a gate’s direction only, or to get 3 saturated
neighbors’ values around the gate for using in elementary rule.

The static gate, of course, would be quite boring. To make it dynamic, let
define another function ξ : [1..N] → [1..N], which is called spin function.
Then, after each step, the gate would change its value as a result of this
function:

pg := ξ(pg). (36)

The spin function may run the gate in loops of pre-defined sequences, or set
it accordingly to other parameters’ values or even change it randomly.

16

Elementary Rules. One of the easier microprograms are those which using el-
ementary CA rules as instructions. So, a microprogram is a set of rules,
executing sequentially. Each rule directly mapping the neighborhood state
to the state of the cell at the next timestep. The cells’ states are binary, so
here we may use saturated energy values as an input. The outcome is also a
binary state: cell is either alive or dead. If we are using a model with energy
conservation, we may interpret “dying” as a command to spread cell’s energy
(either whole or part) to its neighbors. The “birth” may be simulated by
setting a special parameter, telling the dying neighbors at the next timestep
to send more energy to the direction of the “borning” cell.

In case when we are using a rule with lower dimension (e.g. 1D rule in 2D
automaton), we may use a gate to get only those neighbors that are closer
to it. Then, apply corresponding rule, and, in the case of “dying”, spread
energy only in the direction of the gate.

Since rules may take a lot of memory, we may also increment the execu-
tion pointer by a value less than a microinstruction (rule) width. This may
produce interesting effects of “shifting” rules.

Turing Machines. Another possible superset of microprograms is based on Tur-
ing machines. Here, neighbors may be interpreted as a tape, the gate as
a head, the genetic microprogram as a table of states, and the execution
pointer as a Turing machine state register. Then, at the emit phase, we are
a) getting a machine state by the execution pointer b) getting a saturated
value from the neighbor at the direction of the gate c) sending additional
energy in the direction of the gate if the instruction telling us to write a 1
to the tape and d) modifying the gate and the execution pointer according
to the instruction.

The gate is modifying as follows:

pg :=

{
ξ(pg) if head is shifting left,

ξ−1(pg) if head is shifting right,
(37)

where ξ−1 is reverse spin function.

XOR Networks. This is another approach we found interesting for micropro-
grams implementation. XOR Network is a graph with boolean values in the
vertices. At the next timestep, each vertex taking a new value, XORing all
the values of vertices it is sharing an edge with. The idea of using it in our
automata is very simple. We are just looping through the vertices, getting
their boolean values and using them as the instruction to “born”, “live” or
“die”, just like for Elementary Rules.

17

The isolated XOR network is always changing its state in loops, usually it
has several independent loops with “garden of Eden” states. But, if you
interconnect a lot of XOR networks together and let them influence each
other, the result would be quite unpredictable. Let just share some possible
scenarios.

1. The network topology is fixed for all cells, but neighbors could change
a value of the vertex at the execution pointer.

2. The network topology is encoded in genome which is different for each
cell, and a subject to interbreed with the neighbors.

3. The cells are emitting buffered values, that should be XORed with the
neighbor’s current vertex in addition to the network inner logic.

4. The Elementary rule is encoded in vertices values and changing with the
state of network. Then, at each timestep the resulting rule is applying
to the neighbors as described in Elementary Rules paragraph.

5. The vertices are implementing different boolean operators, which are
encoded into cell’s genome. It takes us away from the XOR concept,
but the results may still be interesting.

XOR networks has a lot in common with the loop quantum gravity concept.
Therefore, we must pay more attention to them if we’d like to implement
models with the gravitational effects.

2.9 Parameter Classes

To make it easier to implement parameters for a new CA, we may inherit them
from some pre-defined basic classes. In this section, we will categorize parameters
into possible basic classes.

Scalar value. The most basic parameter, it is just a common integer.

Conserved value. The scalar with additional checks for conservation. Every
time we are changing this parameter in the buffer state, the system auto-
matically changes the main state with the opposite sign, and vice versa.

Angular value. The scalar “rotating” in K grades. Generally, the system makes
sure that the value is in [0, K) range, dividing it modulo K. But there are
also special cases of angular mean and angular difference to be implemented
additionally.

18

Weighted value. At the absorb phase, this parameter’s value is auto-scaled pro-
portionally to some other parameter’s value.

Decaying value. At each timestep, this value is automatically divided by some
factor.

Random value. The parameter is generating a new value each timestep, using
some PRNG algorithm. We found KISS algorithm currently fits best for our
purposes.

Genetic value. At the absorb phase, this value is calculated as crossover of all
incoming genomes. It may also mutate randomly as needed.

2.10 Optimization Patterns

Our framework will generate a code for GPU, and there are several patterns that
could help us to produce more effective code.

1. Parameters should be “lazy”. We must read them from the memory, only
if we need them in the kernel code further. They also could be completely
discarded from the memory in case if we’ll never actually use them.

2. Buffered states should also be “lazy” in the same manner as parameters: no
need to read unnecessary buffers each time.

3. Parameters should be packed in the memory the most compact way, there
should be as less unused bits in a cell’s memory representation as possible.
This will reduce both the memory access time and the memory space per
each cell.

4. A special case, when we are using “gate” and interacting only with neighbors
in the direction of the gate, would be reduced to the less number of buffers,
down to a single buffer.

5. Loops should be manually unrolled when it is possible.

6. Sorting networks should be used as the source for sorting algorithms.

7. Writing operations to the global memory should be “delayed”. We gonna
accumulate the necessary value in the local variable, then flush it to the
global memory once.

This list is most likely not complete, we will extend it in future.

19

Acknowledgments

I would like to give special thanks to following people:

Alexey Shchepin, for optimization ideas, testing, constructive criticism, advice in
LATEX, and corrections to this document;

Yury Poberezhny, for new ideas, brainstorming and support;

Greg Egan, for highly inspiring idea of Autoverse from “Permutation City”;

Gerard t’ Hooft, for ideas from “The Cellular Automaton Interpretation of Quan-
tum Mechanics”.

20

